

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

# **COURSE DESCRIPTION CARD - SYLLABUS**

| Course name                           |                    |                                      |
|---------------------------------------|--------------------|--------------------------------------|
| Theory of probability                 |                    |                                      |
| Course                                |                    |                                      |
| Field of study                        |                    | Year/Semester                        |
| Power Engineering                     |                    | 1/1                                  |
| Area of study (specialization)        |                    | Profile of study                     |
|                                       |                    | general academic                     |
| Level of study                        |                    | Course offered in                    |
| Second-cycle studies                  |                    | Polish                               |
| Form of study                         |                    | Requirements                         |
| part-time                             |                    | compulsory                           |
| Number of hours                       |                    |                                      |
| Lecture                               | Laboratory classes | Other (e.g. online)                  |
| 20                                    |                    |                                      |
| Tutorials                             | Projects/seminars  |                                      |
| 10                                    |                    |                                      |
| Number of credit points               |                    |                                      |
| 3                                     |                    |                                      |
| Lecturers                             |                    |                                      |
| Responsible for the course/lecturer   | :                  | Responsible for the course/lecturer: |
| dr Alina Gleska                       |                    |                                      |
| e-mail: alina.gleska@put.poznan.pl    |                    |                                      |
| tel. 61 665 2330                      |                    |                                      |
| Faculty of Control, Robotics and Elec | ctrical            |                                      |
| Engineering                           |                    |                                      |

#### Prerequisites

1. Student has a basic knowledge of calculus, set theory and logic.

2. Student can operate a calculator, is able to use some statistical table and proposed literature.

3. Student recognizes the necessity in deepening his knowledge.Student is conscious to operate in creative and rational way. Student is active during classes.

### **Course objective**

To acquire basic statistical and probabilistic methods and develop the ability to use these methods to solve practical engineering problems



EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

### **Course-related learning outcomes**

#### Knowledge

Student has a basic knowledge of probability theory, including the rights of probability and a basic knowledge of descriptive and mathematical statistics useful to solve practical engineering problems.

Student knows the basic techniques and tools used to solve simple engineering tasks using information technology and computer support.

#### Skills

Student is able to select and apply appropriate methods and tools and to use them effectively to solve tasks of mathematical statistics. Student can use information and communication technology for the tasks of typical engineering activities. Student is able to interpret the information from literature, databases and other selected sources and to draw conclusions and formulate and justify opinions.

### Social competences

Student is able to argue the necessity of continuous learning. Students are aware of their responsibility for their own work and are) willing to obey the rules of collective work and to take responsibility for collaborative tasks. Student can see cause and effect relationship in achieving the set of goals and rank alternative or competitive tasks.

### Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Lecture - the written exam (three theoretical problems and four exercises).

Tutorials - the test on the last tutorial + additional points for activity (up to 20% of possible points from the test).

### Assessment criteria:

| below 50% - 2,0 | 50%-59% - 3,0 | 60%-69% - 3,5  |
|-----------------|---------------|----------------|
| 70%-79% - 4,0   | 80%-89% - 4,5 | 90%-100% - 5,0 |

### **Programme content**

#### Lecture:

- 1. Introduction to probability theory
- 2. Conditional probability, total probability, independence of random variables, Bayes' theorem
- 3. Discrete random variables. Probability mass function. Cumulative distribution function.
- 4. Continuous random variables. Probability density function. Cumulative distribution function.

5.Measures of random variables: of central tendency (mean, mode, quartile), dispersion (range, variance, standard deviation, the coefficient of dispersion), skewness.



EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- 6. Distributions of discrete random variables and their properties (examples).
- 7. Distributions of continuous random variables and their properties (examples).
- 8. Central limit theorems. The law of large numbers (LLN).
- 9. Point and interval estimations of distribution parameters.
- 10. Statistical hypothesis testing.

### Tutorials:

- 1. Calculating probabilities. Elements of descriptive statistics.
- 2. Exercises for discrete and continuous random variables.
- 3. Estimation of parameters.
- 4. Statistical hypothesis testing.
- 5. Final test.

### **Teaching methods**

Lecture - multimedial presentation + examples on the blackboard

Tutorials - solving problems; discussion about obtained results

### Bibliography

#### Basic

1. Jasiulewicz H., Kordecki W., Rachunek prawdopodobieństwa i statystyka matematyczna. Przykłady i zadania, Oficyna Wydawnicza GiS, 2003

2. Wasilewska E., Statystyka matematyczna w praktyce, Wydawnictwo Difin, 2015

### Additional

1. Krysicki W., Bartos J., Dyczka W., Królikowska K., Wasilewski M., Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach, cz. I i II, Wydawnictwo PWN, 1998

2. Bobrowski D., Probabilistyka w zastosowaniach technicznych, WNT, 1986



EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

## Breakdown of average student's workload

|                                                                    | Hours | ECTS |
|--------------------------------------------------------------------|-------|------|
| Total workload                                                     | 70    | 3,0  |
| Classes requiring direct contact with the teacher                  | 40    | 2,0  |
| Student's own work (literature studies, preparation for tutorials, | 30    | 1,0  |
| preparation for test and exam, solving problems appeared during    |       |      |
| lectures but not solved during tutorials) <sup>1</sup>             |       |      |

<sup>&</sup>lt;sup>1</sup> delete or add other activities as appropriate